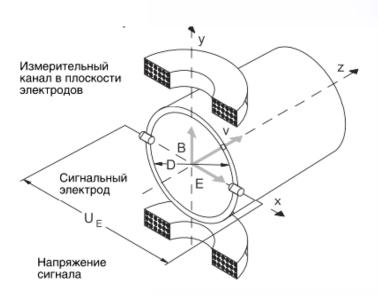


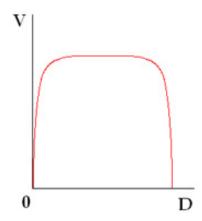
Диапазон 1000 ... все-таки он достижим ?

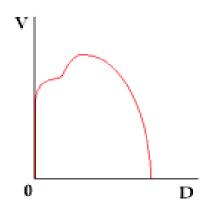

Вопросы:

- **Возможно ли измерение расхода в диапазоне 1000:1, существуют ли на это физические ограничения ?**
- > Правомочно ли утверждение, что расходомер повторит на узле учета характеристики, полученные на проливном стенде, в лаборатории ?
- > Почему расходомеры не воспроизводят свои характеристики на разных проливных стендах ?
- ➤ Актуальность задачи: а нужен ли расходомер с диапазоном 1000 ?

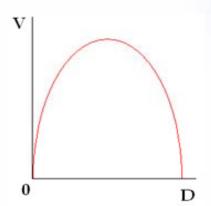
Полный текст статьи размещен на сайте ЗАО «Взлет» в разделе «Наши публикации» за 2009 год. http://www.vzljot.ru/

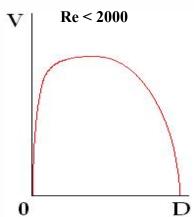
ЭМ - метод измерения расхода



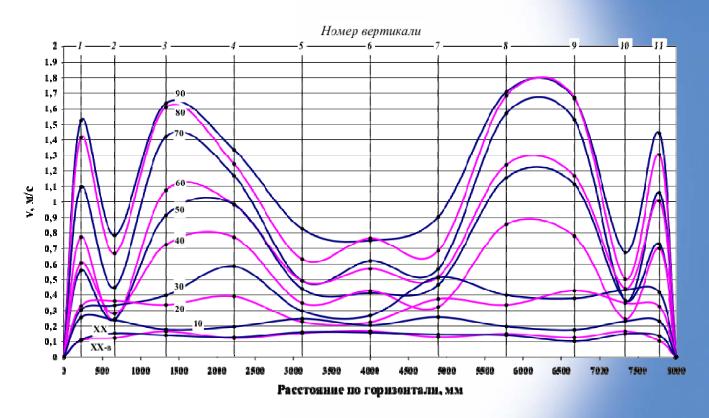

Сигнал ЭМ-расходомера: U=[B*V*D]. Расход определяется как: Q=kπD/4B*U

3 Профили потока при разных числах Рейнольдса Re



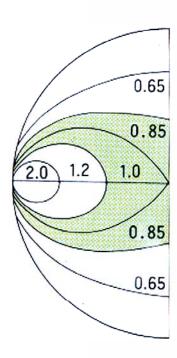


Искажение потока от локальных Re при Re < 2000



Искажение потока от локальных Re при $Re > 10^4$

Пример реальных эпюр скоростей.


(Прямые измерения на водоводе XXX ГЭС)

Агрегат №5. Эпюры скоростей. Правый водовод. Горизонталь 9.

5 Чувствительность различных точек сечения датчика ЭМ - расходомера.

Изолинии весовой функции в классической конструкции с двумя точечными электродами.

6

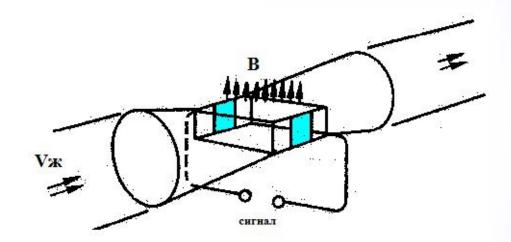
Числа Re для расходомеров с Ду 10, 50 и 150 мм в диапазонах измерения 1000, 500 и 200.

Ду, мм	Re при температуре											
	0 °C			20 °C			100 °C			150 °C		
	Диапазон расходов											
	1000	500	200	1000	500	200	1000	500	200	1000	500	200
10	57 143			121 951			370 370			526 316		
	57	114	286	122	244	610	370	741	1 852	526	1 053	2 632
50	285 714			609 756			1 851 852			2 631 579		
	286	571	1 429	610	1 220	3 049	1 852	3 704	9 259	2 632	5 263	13 158
150	857 143			1 829 268			5 555 556			7 894 737		
	857	1 714	4 286	1 829	3 659	9 146	5 556	11 111	27 778	7 895	15 789	39 474

Для расходомеров с верхним пределом измерения расхода, соответствующим скорости потока $V_{\rm наи6}=10$ м/сек. Температура воды $0^{\rm o},\,20^{\rm o},\,100^{\rm o}$ и $150^{\rm o}$ °C, давление 0,5 МПа

$$Re=V^*d$$
 / υ , для круглых труб $Re_{\kappa p}=2320$

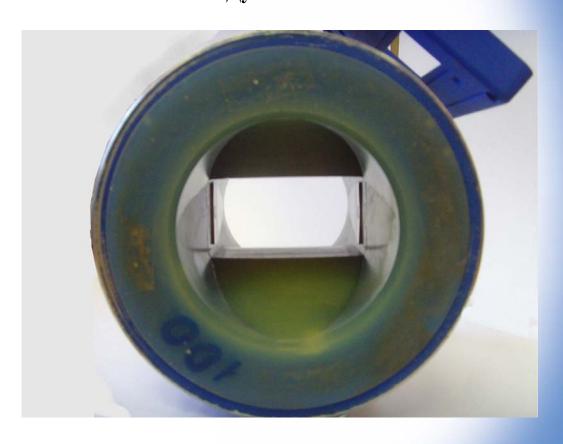
$$Re = V*h / \upsilon$$
, для русел $Re_{\kappa p} = 580$


где: d и h – диаметр и глубина,

V - скорость потока,

V – кинематическая вязкость жидкости


Схема расходомера с прямоугольным каналом


Макет расходомера с прямоугольным каналом Ду 32 мм

Макет расходомера с прямоугольным каналом Ду 100 мм

